首页> 外文OA文献 >A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal)
【2h】

A data mining approach to improve multiple regression models of soil nitrate concentration predictions in Quercus rotundifolia montados (Portugal)

机译:一种数据挖掘方法,用于改善蒙特哥栎(Quercus rotundifolia montados)(葡萄牙)的土壤硝酸盐浓度预测的多元回归模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The changes in the soil nitrate concentrationwere studied during 2 years in a ‘‘montado’’ecosystem, in the South of Portugal. Total rainfall,air and soil temperature and soil water content underand outside Quercus rotundifolia canopy were alsoevaluated. A cluster analysis was carried out usingclimatic and microclimatic parameters in order tomaximize the intraclass similarity and minimize theinterclass similarity. It was used the k-Means ClusteringMethod. Several cluster models were developedusing k values ranging between 2 and 5. Thereafter, ineach cluster, the data were divided according to theirorigin (soil under canopy and open areas, and fromsurface and deep layers). Multiple regression modelswere tested for each cluster, to assess the relationshipbetween soil nitrate concentration and a set of climaticand microclimatic parameters and the results werecompared with models assessed without clustering.The models achieved with data grouped in result ofclustering analysis showed better performance thanthe models achieved without clustering, mostly fordata from open areas soils. When temperature is lowand/or water presents excess or scarcity levels, thedata from soils in undercanopy areas, give rise tomodels with worst performance than models fromopen soil areas data. The results obtained for undercanopyarea suggest that nitrification process in soilunder Quercus rotundifolia trees influence is morecomplex than for open areas, and subject to otherrelevant factors beyond water and temperature.
机译:在葡萄牙南部的“蒙塔多”生态系统中研究了两年的土壤硝酸盐浓度变化。还评估了栎木冠层内外的总降雨量,空气和土壤温度以及土壤水分。使用气候和微气候参数进行聚类分析,以最大化类内相似度并最小化类间相似度。使用了k-Means聚类方法。使用2到5之间的k值开发了几个聚类模型。此后,在每个聚类中,根据数据的来源(冠层和开放区域下的土壤,以及表层和深层的土壤)对数据进行划分。对每个聚类测试了多元回归模型,以评估土壤硝酸盐浓度与一组气候和微气候参数之间的关系,并将结果与​​未聚类评估的模型进行了比较。聚类分析结果中分组数据所获得的模型显示出比非聚类模型更好的性能,主要用于来自开放区域土壤的数据。当温度较低和/或水含量过多或稀缺时,来自树冠下区域土壤的数据将导致性能比开放土壤区域数据的模型差。种植不足的结果表明,栎树下土壤的硝化过程比空旷地区更为复杂,并且受水和温度以外的其他相关因素的影响。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号